Showing posts with label 心理新知. Show all posts
Showing posts with label 心理新知. Show all posts

2011-01-16

Generate anatomical ROI mask based on available atlas in AFNI

Here, I want to share a c-shell script I wrote last Friday (20110/11/14) . The script creates a mask which mask out all the brain regions except amygdala (amyg.), auditory cortex and Brodmann area 10. The three brain areas are the regions of interest (ROIs) of my study. The ROIs are based on the probabilistic cytoarchitectonic map called CA_N27_MPM (See Eickhoff et. al., 2006 [PDF]). This map comes with a widely used software package for Analysis of Functional NeuroImage, AFNI. And the commands used in the script are also from AFNI. The script was written to call tcsh. So, AFNI and tcshell are required. It can also work under other Linux and Unix shells if you do not have tcsh installed. Just change the first line of the script to call the shell you like. You can download the script here or copy the code below to any text editor and save as a ".sh" file. Use chmod to make it executable before you run it.


#!/bin/tcsh

#-xef

# I learned how to do this from http://afni.nimh.nih.gov/afni/community/board/re
ad.php?f=1&i=34988&t=34988#reply_34988
# Also see: http://afni.nimh.nih.gov/pub/dist/doc/program_help/whereami.html
# Qingyang Li
# 2011 01 14
#
#
# This script create 3 ROIs, Amygdala, Auditory cortex and Brodmann Area 10 (fro
ntal cortex). The there ROIs were labled as 1, 2, 3 in the resulted mask
# For BPD study, amyg. is the area of interest, Auditory is the control, BA10 mi
ght be related.
# The selection of atlas was following the sugestion by Poldrack, 2007(DOI:10.10
93/scan/nsm006)
#
echo ""
echo "22003_bpd2_stats_warped+tlrc must be availabe in the current directory with
the script, or it won't finish"
echo
echo

echo "#### Step 1: create anatomical based ROI###"
whereami -mask_atlas_region CA_N27_MPM:120 -prefix 1 #amyg. CM
whereami -mask_atlas_region CA_N27_MPM:150 -prefix 2 #amyg. SF
whereami -mask_atlas_region CA_N27_MPM:215 -prefix 3 #amyg. LB
whereami -mask_atlas_region CA_N27_MPM:130 -prefix 4 #TE 1.0 Auditory
whereami -mask_atlas_region CA_N27_MPM:195 -prefix 5 #TE 1.1 Auditory
whereami -mask_atlas_region CA_N27_MPM:230 -prefix 6 #TE 1.2 Auditory
whereami -mask_atlas_region TT_Daemon:90 -prefix 7 #BA 10

echo "### Step 2: combine ROIs into on file"
3dcalc -a 1+tlrc -b 2+tlrc -c 3+tlrc -d 4+tlrc -e 5+tlrc -f 6+tlrc -g 7+tlrc -expr 'step(a+b+c)+2*step(d+e+f)+3*step(g)' -prefix roi_mask_HR

echo "### Step 3: resample the high resolution ROI mask"
3dfractionize -template 22003_bpd2_stats_warped+tlrc -input roi_mask_HR+tlrc -clip 0.5 -preserve -prefix roi_mask_LR # here we need a functional dataset as template (22003_bpd2_stats_warped+tlrc)

Some endnotes:

1 The BA10 is from TT_Daemon, that’s because I can not find BA 10 or prefrontal cortex in the CA_N27_MPM atlas.

2 Region of interest (ROI) analysis of functional MRI data is very common these days. The key step to carry out an ROI analysis is to generate an ROI mask. The mask is then applied to the fMRI data, raw or processed, to out put only the information from the voxels within the ROIs. Data in the voxels outside the ROIs will be masked out of the analysis. This is a great way to reduce the dimensionality of the fMRI data.

Generally speaking, there are two ways to generate ROIs. 1) The ROI is based on the functional activation map. It’s a bottom-up, data-driven approach. 2) The ROI is based on the anatomical structures. This approach need some a prior knowledge of the study. For example, if you are doing an auditory perception experiment and you are interest in brain activity in the auditory cortex, you can then create a mask to mask out unrelated brain regions and leave only auditory cortex’s data (yes, if you’re doing a real scientific experiment, you will also need another region as the control ).

To create an anatomical ROI, you can a) draw ROIs on your subject's high resolution brain image; b) output ROIs based on existing atlas. Method a) needs training: it’s not easy to eyeball brain structure if you are not trained. I myself is lack of this kind of training. The script I created is method b).

3 if you want to know how many voxels there are in each ROI, you can use 3dmaskavd command.

3dmaskave -mask roi_mask_LR+tlrc -mrange 3 3 roi_mask_LR+tlrc

The command above will tells you how many voxels are in the ROI with a value 3 in it. (change -marange 3 3 to -marange 2 2 if you want the info of the ROI with a value 2 in it)

updated on 20110117: changed the last command, add options for 3dfractionize
updated on 20110118: added end note 3

2008-12-25

[心理新知]最新一期Neuropod : HM, 脑库和08年重要发现


最近一期的《自然》杂志的播客Neuropod 刚刚上线。作为年末的最后一期节目,它对本年度神经科学领域的重要事件与发现做出了精彩总结。

本期主要内容还有:神经心理学家Susan Corkin追悼了不久前过世HM,参观UCL大脑库( 来听听美妙的德国口音吧) 和一些分子神经科学领域的有趣发现。本期的最后部分, 《Nature Neuroscience》的主编Charvy Narain讨论了本年度的重点新发现和结束这一年的最好方式


网页 to Neurpod 的页面.
mp3 12月份的博客.


本文来自Mind Hacks

2008-12-07

[心理新知]Nature:视觉注意力调控机制在脑中的精确位置(zz)


注意力转移的显著影响,可由“注意力不集中多动症”儿童的行为得到很好演示。人们认为,注意力效应出现在丘脑中,但对视觉系统而言,事实证明,要确定传感处理最早阶段的精确发生位置很困难。

现在,McAlonan等人用猕猴所做实验表明,空间注意力调控发生在“外侧膝状核”中,(使其上发生抑制性连接的)相反效应发生在相邻丘脑网状核中。这种相互活动可能是产生瞬间注意力的一个机制,从而证实了由Francis Crick在近25年前提出的一个观点,当时他的兴趣正从DNA转向神经科学。他假设,注意力的方向是由脑中的一个小核指引的,这个小核正是丘脑网状核。

推荐原始出处

(Nature) 456, 391-394 (20 November 2008) | doi:10.1038/nature07382

Guarding the gateway to cortex with attention in visual thalamus

Kerry McAlonan1, James Cavanaugh1 & Robert H. Wurtz1

Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

The massive visual input from the eye to the brain requires selective processing of some visual information at the expense of other information, a process referred to as visual attention. Increases in the responses of visual neurons with attention have been extensively studied along the visual processing streams in monkey cerebral cortex, from primary visual areas to parietal and frontal cortex1, 2, 3, 4. Here we show, by recording neurons in attending macaque monkeys (Macaca mulatta), that attention modulates visual signals before they even reach cortex by increasing responses of both magnocellular and parvocellular neurons in the first relay between retina and cortex, the lateral geniculate nucleus (LGN). At the same time, attention decreases neuronal responses in the adjacent thalamic reticular nucleus (TRN). Crick5 argued for such modulation of the LGN by observing that it is inhibited by the TRN, and suggested that "if the thalamus is the gateway to the cortex, the reticular complex might be described as the guardian of the gateway", a reciprocal relationship we now show to be more than just hypothesis. The reciprocal modulation in LGN and TRN appears only during the initial visual response, but the modulation of LGN reappears later in the response, suggesting separate early and late sources of attentional modulation in LGN.

doubanclaim82235903001f12d3

2008-05-21

[心理视频]EEG/fMRI结合的脑成像研究


Jan de Munck

EEG/ERP(脑电图/事件相关电位)和fMRI是脑成像研究中经常用到的研究方法,前者在被试的头皮记录大脑的电活动,后者则多记录大脑中的血液动力学信号。两者相比较而言各有优劣:EEG记录的电活动发生的相当迅速,记录的时间精度可达到1毫秒(千分之一秒),这种精度可以说是对大脑的实时记录了。而fMRI记录的信号-通常是血氧水平相关(blood-oxygen-level-dependent,BOLD)信号-则反应较慢,需要几秒至几十秒的时间才能达到峰值,而且由于fMRI的硬件的限制,对整个大脑的扫描成像通常需要1秒到3秒的时间。
而从定位的角度来讲,EEG就比不过fMRI了。目前我做听说过的最先进的EEG记录系统有512个记录电极,它最多能同时在头皮的512个点上记录数据。而且由于大脑电活动在传导到头皮之前是可能改变方向的,因此很难直接从EEG数据中得到这些活动发生的准确地点。另外,由于电信号会衰减,EEG也就很难拾取到大脑内部深层结构的活动,只能记录大脑皮层的电信号。这就造成EEG/ERP研究的定位不是十分可靠——当然科学家们正在想法设法运用各种数学模型和算法来提高EEG/ERP的定位精度。与EEG/ERP相比,fMRI则有着无可比拟的定位精度——精确到毫米。这意味着,一旦我们发现与实验任务相关的信号,我们可以精确的判断出来这个信号来自何处。
简单总结一下,EEG有着很高的时间精度,我们却很难从中得知信号来自何方。我们知道大脑在执行某任务时的变化却不知道此那个脑区对这些变化负责。而fMRI可以告诉我们当我们执行某任务时那一部分大脑最为活跃,可是却又不能知道它干了些啥。很痛苦,哈。
说道这里,我猜你有话要说了吧我的读者?为什么不把两者结合起来呢?用EEG告诉我们大脑在干什么,用fMRI告诉我们究竟是那一部分大脑在做这件事,从而在时间和空间结合的角度上来研究我们的大脑功能。嘿,科学家们也这么想,不过真正这样做的却不多。这里面的原因是多样的。首先,EEG和BOLD信号在性质上不同,我们必须想办法找到把它们关联起来的方法。这就要做很多的工作,包括去除两种信号中的种种噪音和环境的影响,包括数学模型的建立,还要找到能用这两种方法都可以有效进行研究的实验任务,等等等等.... ....
我一直有兴趣能将不同的脑成像方法结合起来进行做通道的研究,现在机会来了。我们实验室最近决定向这个方向发展一下,起因在于一个在我们实验室工作的本科生Will对这个感兴趣,想往这个方向发展。我们实验室同时拥有EEG,MEG(脑磁图)记录仪和MRI扫描仪,而且这些仪器都在一处,这样的实验室配置放眼全世界也屈指可数。这样方便的条件使得这个想法能得以轻松的实现。我的导师制定我来帮助Will共同进行这个方向的研究,大概是看定我既有EEG/ERP研究经验,又有fMRI研究经验吧。虽然我研究生时完成过几个ERP实验,又学习了一年多的fMRI,但是对这两个领域自认只知皮毛。不过我想这个新的项目可能让我能学到更多,获得更多的研究经验。虽然难度小不了,但是我还是小小的兴奋起来。
今天在查资料的时候发现了videolectures.net这个网站上有几个讲座视频是探讨这个问题,觉得很有启发,把它们放到这里,同心理学爱好者们共享,希望不久的将来,我也能跟大家分享我的心得。




EEG/fMRI correlation analysis. A data and model driven approach


Jan de Munck



Multimodal Imaging: EEG-fMRI integration


Tom Eichele

2007-10-28

[心理新知]我订阅的心理学博客


写这篇文章的动机,是一位网友来信让我推荐行为科学相关网站和blog。我的阅读量实在很小,又不善于去粗取精,不敢为大家当阅读过滤器。于是干脆,将我平时阅读的心理学blog和心理学资讯来源一股脑全放在这里得了。至于大家是全盘接受还是有所选择,那是各位的自由,我就不加干涉了。
我平时订阅的blog和消息来源就是下面的33个,每个blog我都分别给出了rss订阅地址和网址。
如果大家闲一个一个的网自己的rss阅读器里导入麻烦,点击这里下载所有rss的OPML文件:
大家下载之后导入自己的rss阅读器就可以了。

另外,如果各位有正在阅读的好的心理学博客,请不吝赐教,向我推荐。谢谢!

"All In The Mind"
rss: http://blogs.abc.net.au/allinthemind/atom.xml"
url: http://blogs.abc.net.au/allinthemind/

"Babel's Dawn"
rss: http://ebbolles.typepad.com/babels_dawn/atom.xml"
http://ebbolles.typepad.com/babels_dawn/

"BPS Research Digest"
rss: http://feeds.feedburner.com/BpsResearchDigest"
http://bps-research-digest.blogspot.com/

"Brain Waves"
rss: http://brainwaves.corante.com/index.xml"


"Channel N"
rss: http://feeds.feedburner.com/ChannelN"
url: http://channeln.blogspot.com/

"Cognitive Daily"
rss: http://scienceblogs.com/cognitivedaily/atom.xml"
url: http://scienceblogs.com/cognitivedaily/

"Deception Blog"
rss: http://deception.crimepsychblog.com/?feed=rss2"
url: http://deception.crimepsychblog.com

"Dr Petra Boynton I Blog"
rss: http://feeds.feedburner.com/DrPetraBoyntonBlog"
url: http://www.drpetra.co.uk/blog

"Madam Fathom"
rss: http://feeds.feedburner.com/madamfathom"
url: http://madamfathom.blogspot.com/

"Mind Hacks"
rss: http://www.mindhacks.com/atom.xml"
url: http://www.mindhacks.com/

"Mixing Memory"
rss: http://scienceblogs.com/mixingmemory/atom.xml"
url: http://scienceblogs.com/mixingmemory/

"Neuroeconomics"
rss: http://neuroeconomics.typepad.com/neuroeconomics/atom.xml"
url: http://neuroeconomics.typepad.com/neuroeconomics/

"Neuromarketing"
rss: http://www.neurosciencemarketing.com/blog/feed/"
url: http://www.neurosciencemarketing.com/blog

"Neurophilosophy"
rss: http://feeds.feedburner.com/Neurophilosophy"
url: http://neurophilosophy.wordpress.com

"Omni Brain"
rss: http://feeds.feedburner.com/scienceblogs/omnibrain"
url: http://scienceblogs.com/omnibrain/

"PANIC!"
rss: http://panicanddepression.blogspot.com/feeds/posts/default"
url: http://panicanddepression.blogspot.com/


"PsyBlog | Psychology Blog"
rss: http://www.spring.org.uk/atom.xml"
url: http://www.spring.org.uk/index.php

"PsychSplash"
rss: http://feeds.feedburner.com/Psychsplash"
url: http://www.psychsplash.com

"Schizophrenia Daily News Blog"
rss: http://www.schizophrenia.com/sznews/index.xml"
http://www.schizophrenia.com/sznews/

"The Last Psychiatrist"
rss: http://thelastpsychiatrist.com/atom.xml"
url: http://thelastpsychiatrist.com/

"The Phineas Gage Fan Club"
rss: http://phineasgage.wordpress.com/feed/"
url: http://phineasgage.wordpress.com

"Psychology Express "
rss: http://feeds.feedburner.com/PsyTopic"
url: http://www.psytopic.com/mag

"乐华学圈"
rss: http://www.blogcn.com/rss2/chenglh.xml"
url: http://chenglh.blogcn.com

"大脑 - Google 资讯 "
rss: http://news.google.com/news?hl=zh-CN&ned=cn&q=%E5%A4%A7%E8%84%91&ie=UTF-8&output=rss"
url: http://news.google.com/news?hl=zh-CN&ned=cn&q=%B4%F3%C4%D4&ie=GB2312

"德克斯特特"
rss: http://blog.sina.com.cn/myblog/index_rss.php?uid=1225325030"
url: http://blog.sina.com.cn/zhaolinboke

"心理学留学足迹"
rss: http://tanlun.blogspot.com/feeds/posts/default"
url: http://tanlun.blogspot.com/

"百度搜索_心理学实验"
rss: http://news.baidu.com/ns?word=%D0%C4%C0%ED%D1%A7%CA%B5%D1%E9&ie=gb2312&cl=2&rn=20&ct=0&tn=newsrss&class=0"
url: http://news.baidu.com

"百度新闻_心理学"
rss: http://news.baidu.com/ns?word=title%3A%D0%C4%C0%ED%D1%A7&ie=gb2312&cl=2&rn=20&ct=0&tn=newsrss&class="
url: http://news.baidu.com

"笑谈心理学"
rss: http://www.xlxcn.net/blog/feed.asp"
url: http://www.xlxcn.net/blog/

"脑与认知"
rss: http://www.blogcn.com/rss2/polar.xml"
url: http://polar.blogcn.com

"觅心阁"
rss: http://blog.sina.com.cn/myblog/index_rss.php?uid=1047573482"
url: http://blog.sina.com.cn/ipsy

"豆瓣: 科学心理学小组"
rss: http://www.douban.com/feed/group/psy-sci/discussion
http://www.douban.com/group/psy-sci/discussion

"阿来:心有灵犀"
rss: http://www.xlxcn.net/oblog/user1/106/rss2.xml
url: http://www.xlxcn.net/oblog/user1/106/index.html

2007-10-27

[心理新知]Neurolaw


实话实说,Neurolaw这个词我今天第一次听说。我订阅的两个blog今天不约而同的谈到了这个话题(请看这里这里)。我并没有找到这个词对应的中文词汇,因此我就自作主张,在本文中将其译做“神经法学”。

神经法学的出现并不只今天才有的事情。我在网上找到的一个以神经法学作为域名的网站www.neurolaw.com,自从20003年就出现了。虽然这个概念的出现已经几年了,其开始受到公众关注却是最近才的事。就连维基百科上的"neurolaw"词条,所引用的文章最早也只是到今年三月份才发表的。这篇使神经法学进入公共视野的文章,今年3月11日发表在《纽约时代周刊》杂志上,文章题目名为《The Brain on the Stand》的文章。该文发表后,其作者Jeffrey Rosen又在3月13日在接受NPR的采访介绍神经法学这一概念,在节目中谈起了大脑异常以及大脑异常对人行为的影响以及由此造成的犯罪行为应该如何定罪。节目录音在这里:http://www.npr.org/templates/story/story.php?storyId=7871885

今天,引起这MindHacks以及PsychologyBlog这两个blog谈论这个神经法学这一话题的直接原因是《泰晤士报(The Times)》刊载的Raymond Tallis的一篇文章《Why blame me? It was all my brain’s fault-The dubious rise of ‘neurolaw’》。该文中引用了Bobby Joe Long的案例来描述神经法学在司法实践的应用。在该案中Bobby的律师为其辩护称:通过使用功能性脑成像技术扫描他的大脑,发现他的杏仁核异常活跃而其前额叶却非常不活跃。律师认为,异常活跃的杏仁核使得他具有比常人强烈的攻击性,而不易被激活的前额叶则导致他不能抑制这些攻击性冲动。是他的大脑异常造成他的犯罪行为,而不是他“故意”犯罪。

Tallis提到的这个案例,使我想起了最近看过的《法律与秩序:特殊受害者》第九季第三集。剧中有一个男孩强奸了其老师,但是在随后的案件调查和处理中,办案人员发现其大脑负责性唤醒的区域异常活跃,而因为其未成年,其大脑前额叶并没有发育成熟,因而其抑制其性冲动的能力非常低。庭外和解过程中,控方律师因其年轻和上面提到的大脑异常,取消了对其控告但是要求其接收治疗。 同Bobby的案例一样,这集法律与秩序同样向公众提出了“神经法学”在司法中的作用。

这几个案例中,真正引人们思考的是,如何对这些犯罪的人定罪。我对于法律是一窍不通的,因此只能从常识出发做些判断。这些人认为自己之所以有犯罪行为,不是因为他们是坏人,而是因为他们是病人:他们的大脑的异常才是真正的罪魁祸首。法律是为了惩戒坏人保护好人而设立的。坏人是该进监狱,而病人需要的是治疗,应该进医院。这听上去有道理么?

对于上面的问题,我不知道该怎么回答。理智告诉我他们的辩护是有道理的,而情感则告诉我他们的行为实在是不可饶恕。理智与情感的矛盾,无法调和。同样的,社会各界对这个问题的回答基本上也是两种。无论最终司法界如何回答这个问题,如何判决这些案件,无可否认的是神经司法在司法过程中的重要性将越来越重要。神经科学的应用范围也愈加的广泛。这对我们这些神经科学工作者,无疑是一个巨大的鼓励。